ISOS-SAB DC/DC Converter for Large-Capacity Offshore Wind Turbine

This study offers a modular isolated grid-connected DC/DC medium-voltage DC aggregation converter to support offshore full DC wind farms’ need for lightweight and highly efficient power aggregation and transmission. The converter can simultaneously have a smaller transformer size and lower switching...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2024-10, Vol.17 (20), p.5071
Hauptverfasser: Cai, Xipeng, Liu, Yixin, Zhu, Yihua, Zhou, Yanbing, Luo, Chao, Liu, Qihui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study offers a modular isolated grid-connected DC/DC medium-voltage DC aggregation converter to support offshore full DC wind farms’ need for lightweight and highly efficient power aggregation and transmission. The converter can simultaneously have a smaller transformer size and lower switching frequency during operation through the dual-voltage stabilization three-loop control strategy and phase-shift modulation strategy, which greatly reduces the space occupied by the converter and lowers the switching loss, Additionally, the use of a two-level structure at a lower switching frequency has lower loss, which effectively reduces the cost of the power device compared with the commonly used three-level converter. The input series output series connection between the converter sub-modules effectively lowers the voltage stress on each power switching device and facilitates expansion into a multi-module structure, expanding its application in high-voltage and large-capacity environments. This study analyzes the two working modes of the DC/DC converter and its control approach, in addition to providing a detailed introduction to the application scenarios of this converter. Ultimately, the efficacy and practicability of the suggested topology and control scheme are confirmed by simulations and experiments.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17205071