A Character Condition for Quadruple Transitivity
Let G be a permutation group of degree n viewed as a subgroup of the symmetric group S≅Sn. We show that if the irreducible character of S corresponding to the partition of n into subsets of sizes n−2 and 2, that is, to say the character often denoted by χ(n−2,2), remains irreducible when restricted...
Gespeichert in:
Veröffentlicht in: | International Journal of Mathematics and Mathematical Sciences 2011, Vol.2011 (2011), p.206-218-114 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a permutation group of degree n viewed as a subgroup of the symmetric group S≅Sn. We show that if the irreducible character of S corresponding to the partition of n into subsets of sizes n−2 and 2, that is, to say the character often denoted by χ(n−2,2), remains irreducible when restricted to G, then n = 4, 5 or 9 and G≅S3, A5, or PΣL2(8), respectively, or G is 4-transitive. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/2011/757134 |