Limiting Behavior of the Partial Sum for Negatively Superadditive Dependent Random Vectors in Hilbert Space

In this paper, We study the complete convergence and Lp- convergence for the maximum of the partial sum of negatively superadditive dependent random vectors in Hilbert space. The results extend the corresponding ones of Ko (Ko, 2020) to H-valued negatively superadditive dependent random vectors.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2020, Vol.2020 (2020), p.1-6
1. Verfasser: Ko, Mi-Hwa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, We study the complete convergence and Lp- convergence for the maximum of the partial sum of negatively superadditive dependent random vectors in Hilbert space. The results extend the corresponding ones of Ko (Ko, 2020) to H-valued negatively superadditive dependent random vectors.
ISSN:2314-4629
2314-4785
DOI:10.1155/2020/8609859