Phosphorylation modifies the molecular stability of β-amyloid deposits
Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β...
Gespeichert in:
Veröffentlicht in: | Nature communications 2016-04, Vol.7 (1), p.11359-11359, Article 11359 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein aggregation plays a crucial role in neurodegenerative diseases. A key feature of protein aggregates is their ubiquitous modification by phosphorylation. Little is known, however, about the molecular consequences of phosphorylation of protein aggregates. Here we show that phosphorylation of β-amyloid at serine 8 increases the stability of its pathogenic aggregates against high-pressure and SDS-induced dissociation. We further demonstrate that phosphorylation results in an elevated number of hydrogen bonds at the N terminus of β-amyloid, the region that is critically regulated by a variety of post-translational modifications. Because of the increased lifetime of phosphorylated β-amyloid aggregates, phosphorylation can promote the spreading of β-amyloid in Alzheimer pathogenesis. Our study suggests that regulation of the molecular stability of protein aggregates by post-translational modifications is a crucial factor for disease progression in the brain.
Protein aggregation plays a crucial role in several neurodegenerative diseases. Here the authors demonstrate that phosphorylation of β-amyloid aggregates—the pathological hallmark of Alzheimer's disease—can change the molecular properties of aggregates, suggesting how phosphorylation contributes to disease progression. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms11359 |