Microtubules provide force to promote membrane uncoating in vacuolar escape for a cyto-invasive bacterial pathogen

Intracellular bacterial pathogens gain entry to mammalian cells inside a vacuole derived from the host membrane. Some of them escape the bacteria-containing vacuole (BCV) and colonize the cytosol. Bacteria replicating within BCVs coopt the microtubule network to position it within infected cells, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-02, Vol.15 (1), p.1065-1065, Article 1065
Hauptverfasser: Chang, Yuen-Yan, Valenzuela, Camila, Lensen, Arthur, Lopez-Montero, Noelia, Sidik, Saima, Salogiannis, John, Enninga, Jost, Rohde, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intracellular bacterial pathogens gain entry to mammalian cells inside a vacuole derived from the host membrane. Some of them escape the bacteria-containing vacuole (BCV) and colonize the cytosol. Bacteria replicating within BCVs coopt the microtubule network to position it within infected cells, whereas the role of microtubules for cyto-invasive pathogens remains obscure. Here, we show that the microtubule motor cytoplasmic dynein-1 and specific activating adaptors are hijacked by the enterobacterium Shigella flexneri . These host proteins were found on infection-associated macropinosomes (IAMs) formed during Shigella internalization. We identified Rab8 and Rab13 as mediators of dynein recruitment and discovered that the Shigella effector protein IpaH7.8 promotes Rab13 retention on moving BCV membrane remnants, thereby facilitating membrane uncoating of the Shigella -containing vacuole. Moreover, the efficient unpeeling of BCV remnants contributes to a successful intercellular spread. Taken together, our work demonstrates how a bacterial pathogen subverts the intracellular transport machinery to secure a cytosolic niche. Shigella enters human cells in a phagocytic vacuole and then escapes the vacuole to colonize the cytosol. Here, Chang and coworkers show that Shigella uses a bacterial effector to subvert host Rab proteins, microtubules and molecular motors to provide mechanical force to facilitate Shigella escape.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-45182-6