Potent and Selective Inhibitors of Human Monoamine Oxidase A from an Endogenous Lichen Fungus Diaporthe mahothocarpus

Using 126 endogenous lichen fungus (ELF) extracts, inhibitory activities against monoamine oxidases (MAOs) and cholinesterases (ChEs) were evaluated. Among them, extract ELF29 of the endogenous fungus Diaporthe mahothocarpus of the lichen Cladonia symphycarpia showed the highest inhibitory activity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fungi (Basel) 2021-10, Vol.7 (10), p.876
Hauptverfasser: Jeong, Geum Seok, Hillman, Prima F., Kang, Myung-Gyun, Hwang, Sungbo, Park, Jong-Eun, Nam, Sang-Jip, Park, Daeui, Kim, Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using 126 endogenous lichen fungus (ELF) extracts, inhibitory activities against monoamine oxidases (MAOs) and cholinesterases (ChEs) were evaluated. Among them, extract ELF29 of the endogenous fungus Diaporthe mahothocarpus of the lichen Cladonia symphycarpia showed the highest inhibitory activity against hMAO-A. Compounds alternariol (AT), 5′-hydroxy-alternariol (HAT), and mycoepoxydiene (MED), isolated from the extract, had potent inhibitory activities against hMAO-A with IC50 values of 0.020, 0.31, and 8.68 µM, respectively. AT, HAT, and MED are reversible competitive inhibitors of hMAO-A with Ki values of 0.0075, 0.116, and 3.76 µM, respectively. The molecular docking studies suggested that AT, HAT, and MED had higher binding affinities for hMAO-A (−9.1, −6.9, and −5.6 kcal/mol, respectively) than for hMAO-B (−6.3, −5.2, and −3.7 kcal/mol, respectively). The relative tight binding might result from a hydrogen bond interaction of the three compounds with a Tyr444 residue in hMAO-A, whereas no hydrogen bond interaction was proposed in hMAO-B. In silico pharmacokinetics, the three compounds showed high gastrointestinal absorption without violating Lipinski’s five rules, but only MED showed high probability to cross the blood–brain barrier. These results suggest that AT, HAT, and MED are candidates for treating neuropsychiatric disorders, such as depression and cardiovascular disease.
ISSN:2309-608X
2309-608X
DOI:10.3390/jof7100876