Seasonal and diurnal variations of Kelvin-Helmholtz Instability at terrestrial magnetopause
Kelvin-Helmholtz Instability is ubiquitous at Earth’s magnetopause and plays an important role in plasma entry into the magnetosphere during northward interplanetary magnetic fields. Here, using one solar cycle of data from NASA THEMIS (Time History of Events and Macro scale Interactions during Subs...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-05, Vol.14 (1), p.2513-2513, Article 2513 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Kelvin-Helmholtz Instability is ubiquitous at Earth’s magnetopause and plays an important role in plasma entry into the magnetosphere during northward interplanetary magnetic fields. Here, using one solar cycle of data from NASA THEMIS (Time History of Events and Macro scale Interactions during Substorms) and MMS (Magnetospheric Multiscale) missions, we found that KHI occurrence rates show seasonal and diurnal variations with the rate being high near the equinoxes and low near the solstices. The instability depends directly on the Earth’s dipole tilt angle. The tilt toward or away from the Sun explains most of the seasonal and diurnal variations, while the tilt in the plane perpendicular to the Earth‐Sun line explains the difference between the equinoxes. The results reveal the critical role of dipole tilt in modulating KHI across the magnetopause as a function of time, highlighting the importance of Sun-Earth geometry for solar wind-magnetosphere interaction and for space weather.
Kelvin-Helmholtz Instability (KHI) has been suggested as a significant source of geomagnetic activity during northward Interplanetary Magnetic Fields (IMF). Here, the authors show seasonal and diurnal variations of KHI at Earth’s magnetopause, highlighting the importance of Sun-earth geometry for space weather. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-37485-x |