A comprehensive single cell transcriptional landscape of human hematopoietic progenitors

Hematopoietic Stem/Progenitor cells (HSPCs) are endowed with the role of maintaining a diverse pool of blood cells throughout the human life. Despite recent efforts, the nature of the early cell fate decisions remains contentious. Using single-cell RNA-Seq, we show that existing approaches to strati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-06, Vol.10 (1), p.2395-15, Article 2395
Hauptverfasser: Pellin, Danilo, Loperfido, Mariana, Baricordi, Cristina, Wolock, Samuel L., Montepeloso, Annita, Weinberg, Olga K., Biffi, Alessandra, Klein, Allon M., Biasco, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hematopoietic Stem/Progenitor cells (HSPCs) are endowed with the role of maintaining a diverse pool of blood cells throughout the human life. Despite recent efforts, the nature of the early cell fate decisions remains contentious. Using single-cell RNA-Seq, we show that existing approaches to stratify bone marrow CD34+ cells reveal a hierarchically-structured transcriptional landscape of hematopoietic differentiation. Still, this landscape misses important early fate decisions. We here provide a broader transcriptional profiling of bone marrow lineage negative hematopoietic progenitors that recovers a key missing branchpoint into basophils and expands our understanding of the underlying structure of early adult human haematopoiesis. We also show that this map has strong similarities in topology and gene expression to that found in mouse. Finally, we identify the sialomucin CD164, as a reliable marker for the earliest branches of HSPCs specification and we showed how its use can foster the design of alternative transplantation cell products. Human Hematopoietic stem and progenitor cells (HSPCs) are commonly defined by CD34 expression. Here, the authors map single-cell RNA states both inside and outside the CD34 compartment, uncovering previously unappreciated branchpoints and validating CD164 as an efficient marker for early HSPCs.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-10291-0