A large planetary body inferred from diamond inclusions in a ureilite meteorite

Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon- to Mars-sized planetary embryos through energetic giant impacts. However, relics of these large proto-planets are yet to be found. Ureilites are one of the main families of achondritic meteorites an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-04, Vol.9 (1), p.1327-6, Article 1327
Hauptverfasser: Nabiei, Farhang, Badro, James, Dennenwaldt, Teresa, Oveisi, Emad, Cantoni, Marco, Hébert, Cécile, El Goresy, Ahmed, Barrat, Jean-Alix, Gillet, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon- to Mars-sized planetary embryos through energetic giant impacts. However, relics of these large proto-planets are yet to be found. Ureilites are one of the main families of achondritic meteorites and their parent body is believed to have been catastrophically disrupted by an impact during the first 10 million years of the solar system. Here we studied a section of the Almahata Sitta ureilite using transmission electron microscopy, where large diamonds were formed at high pressure inside the parent body. We discovered chromite, phosphate, and (Fe,Ni)-sulfide inclusions embedded in diamond. The composition and morphology of the inclusions can only be explained if the formation pressure was higher than 20 GPa. Such pressures suggest that the ureilite parent body was a Mercury- to Mars-sized planetary embryo. Ureilites are a type of meteorite that are believed to be derived from a parent body that was impacted in the early solar system. Here, the authors analyse inclusions within diamonds from a ureilite meteorite and find that they must have formed at above 20 GPa suggesting the parent body was Mercury- to Mars-sized.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-03808-6