Microencapsulation of Tecoma stans Extracts: Bioactive Properties Preservation and Physical Characterization Analysis

Bioactive compounds from medicinal plants have applications in the development of functional foods. However, since they are unstable, encapsulation is used as a conservation alternative. This work aimed to assess the bioactive properties (antioxidant and hypoglycemic) of different extracts, includin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foods 2024-03, Vol.13 (7), p.1001
Hauptverfasser: García-Jiménez, Jair R, Luna-Guevara, María L, Luna-Guevara, Juan J, Conde-Hernández, Lilia A, Ramos-Cassellis, María E, Hernández-Cocoletzi, Heriberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioactive compounds from medicinal plants have applications in the development of functional foods. However, since they are unstable, encapsulation is used as a conservation alternative. This work aimed to assess the bioactive properties (antioxidant and hypoglycemic) of different extracts, including the infusion, as well as their spray-dried microencapsulates from leaves. A factorial design was proposed to determine the best extraction conditions, based on ABTS and DPPH inhibition. Maltodextrin (MD), arabic gum (AG), and a 1:1 blend (MD:AG) were used as encapsulating agents. Moreover, characterization through physicochemical properties, gas chromatography/mass spectrometry (GC-MS) and scanning electron microscopy (SEM) of the best two powders based on the bioactive properties were analyzed. The results showed that the combination of stirring, water, and 5 min provided the highest inhibition to ABTS and DPPH (35.64 ± 1.25 mg Trolox/g d.s. and 2.77 ± 0.01 g Trolox/g d.s., respectively). Spray drying decreased the antioxidant activity of the extract while preserving it in the infusion. The encapsulated infusion with MD:AG had the highest hypoglycemic activity as it presented the lowest glycemic index (GI = 47). According to the results, the microencapsulates could potentially be added in foods to enhance nutritional quality and prevent/treat ailments.
ISSN:2304-8158
2304-8158
DOI:10.3390/foods13071001