Highly Effective Ex Vivo Gene Manipulation to Study Kidney Development Using Self-Complementary Adenoassociated Viruses

Background. Ex vivo culture of intact embryonic kidney has become a powerful system for studying renal development. However, few methods have been available for gene manipulation and have impeded the identification and investigation of genes in this developmental process. Results. Here we systemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TheScientificWorld 2014-01, Vol.2014 (2014), p.1-8
Hauptverfasser: Lv, Xiao-Yan, Zhou, Pu-Hui, Tan, Rui-Zhi, Fang, Yin, Liu, Yun-Hong, Wang, Hong-Lian, Chen, Tie-Lin, Zhou, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background. Ex vivo culture of intact embryonic kidney has become a powerful system for studying renal development. However, few methods have been available for gene manipulation and have impeded the identification and investigation of genes in this developmental process. Results. Here we systemically compared eight different serotypes of pseudotyped self-complementary adenoassociated viruses (scAAVs) transduction in cultured embryonic kidney with a modified culture procedure. We demonstrated that scAAV was highly effective in delivering genes into and expressing in compacted tissues. scAAV serotypes 2 and 8 exhibited higher efficiency of transduction compared to others. Expression kinetics assay revealed that scAAV can be used for gene manipulation at the study of UB branching and nephrogenesis. Repressing WT1 in cultured kidney using shRNA impairs tubule formation. We for the first time employed and validated scAAV as a gene delivery tool in cultured kidney. Conclusions. These findings are expected to expedite the use of the ex vivo embryonic kidney cultures for kidney development research. For other ex vivo cultured organ models, scAAV could also be a promising tool for organogenesis study.
ISSN:2356-6140
1537-744X
1537-744X
DOI:10.1155/2014/682189