Novel Real-Time Compensation Method for Machine Tool’s Ball Screw Thermal Error
The real-time compensation of thermal error in ball screws is an effective means to improve the accuracy of machining tools. However, the trade-off between robustness and computational efficiency of existing ball screw thermal error models is complicated and not conducive to practical, high-precisio...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2023-03, Vol.13 (5), p.2833 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The real-time compensation of thermal error in ball screws is an effective means to improve the accuracy of machining tools. However, the trade-off between robustness and computational efficiency of existing ball screw thermal error models is complicated and not conducive to practical, high-precision, real-time error compensation. Focusing on this problem, we propose an iterative prediction model of screw thermal error based on a finite difference equation. By assuming an approximately linear relationship between heat generation and the ball screw’s convection power and feed speed, a simplified and more efficient identification of physical parameters needed for the iterative model is achieved. The proposed method is integrated with a three-axis drilling and tapping machine powered by an HNC–848D controller. A test piece machine using the proposed real-time thermal error compensation method exhibited a maximum machining error of 13 µm, compared to the 71 µm of an uncompensated specimen. The proposed method is demonstrated to improve machining accuracy, especially in the X- and Y- axes, and overcome the limitations of traditional thermal error prediction models. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13052833 |