On a conjecture on transposed Poisson $ n $-Lie algebras
The notion of a transposed Poisson $ n $-Lie algebra has been developed as a natural generalization of a transposed Poisson algebra. It was conjectured that a transposed Poisson $ n $-Lie algebra with a derivation gives rise to a transposed Poisson $ (n+1) $-Lie algebra. In this paper, we focus on t...
Gespeichert in:
Veröffentlicht in: | AIMS mathematics 2024-01, Vol.9 (3), p.6709-6733 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The notion of a transposed Poisson $ n $-Lie algebra has been developed as a natural generalization of a transposed Poisson algebra. It was conjectured that a transposed Poisson $ n $-Lie algebra with a derivation gives rise to a transposed Poisson $ (n+1) $-Lie algebra. In this paper, we focus on transposed Poisson $ n $-Lie algebras. We have obtained a rich family of identities for these algebras. As an application of these formulas, we provide a construction of $ (n+1) $-Lie algebras from transposed Poisson $ n $-Lie algebras with derivations under a certain strong condition, and we prove the conjecture in these cases. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2024327 |