Photonic-electronic integrated circuit-based coherent LiDAR engine

Chip-scale integration is a key enabler for the deployment of photonic technologies. Coherent laser ranging or FMCW LiDAR, a perception technology that benefits from instantaneous velocity and distance detection, eye-safe operation, long-range, and immunity to interference. However, wafer-scale inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-04, Vol.15 (1), p.3134-3134, Article 3134
Hauptverfasser: Lukashchuk, Anton, Yildirim, Halil Kerim, Bancora, Andrea, Lihachev, Grigory, Liu, Yang, Qiu, Zheru, Ji, Xinru, Voloshin, Andrey, Bhave, Sunil A., Charbon, Edoardo, Kippenberg, Tobias J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chip-scale integration is a key enabler for the deployment of photonic technologies. Coherent laser ranging or FMCW LiDAR, a perception technology that benefits from instantaneous velocity and distance detection, eye-safe operation, long-range, and immunity to interference. However, wafer-scale integration of these systems has been challenged by stringent requirements on laser coherence, frequency agility, and the necessity for optical amplifiers. Here, we demonstrate a photonic-electronic LiDAR source composed of a micro-electronic-based high-voltage arbitrary waveform generator, a hybrid photonic circuit-based tunable Vernier laser with piezoelectric actuators, and an erbium-doped waveguide amplifier. Importantly, all systems are realized in a wafer-scale manufacturing-compatible process comprising III-V semiconductors, silicon nitride photonic integrated circuits, and 130-nm SiGe bipolar complementary metal-oxide-semiconductor (CMOS) technology. We conducted ranging experiments at a 10-meter distance with a precision level of 10 cm and a 50 kHz acquisition rate. The laser source is turnkey and linearization-free, and it can be seamlessly integrated with existing focal plane and optical phased array LiDAR approaches. The researchers showcase a photonic-electronic FMCW LiDAR source composed of a micro-electronic based high-voltage arbitrary waveform generator, a photonic circuit-based tunable Vernier laser with piezoelectric actuators, and an erbium-doped waveguide amplifier.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-47478-z