Irreversibility effects in peristaltic transport of hybrid nanomaterial in the presence of heat absorption

The nano heat transport has gained much significance in recent era. The micro-level devices are enganged succssfully in diverse fields like electronics, biomedical, navel structures, manufacturing, transportation, and automotive industries in order to improve the heat transfer for cooling and heatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-10, Vol.11 (1), p.19697-19697, Article 19697
Hauptverfasser: Sheriff, Samreen, Ahmad, S., Mir, N. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nano heat transport has gained much significance in recent era. The micro-level devices are enganged succssfully in diverse fields like electronics, biomedical, navel structures, manufacturing, transportation, and automotive industries in order to improve the heat transfer for cooling and heating. Owing to this fact, the current article illustrates the features of irreversibility and thermal jump in peristaltic transport of hybrid nanoliquid. Here, water is used as base liquid while nanoparticles include polystyrene and graphene oxide. The flow is carried out in a non-uniform channel where the walls of channel flexible nature. Additionally, magnetic field impacts on flow and Joule heating analysis are examined. The aspect featuring heat absorption is introduced. Nanoparticle's shapes effect is also incorporated in flow analysis. Under the consideration of small Rynold number and long wavelength, the relevent equations are reduced by implementing non-dimensional variables. Involved pertinent parameters influence the peristaltic flow characteristics are displayed graphically and discussed concisely. The result indicates that temperature curves are dominant for pure water as compared to P/water nanofluid and P-GO/water hybrid nanofluid. Moreover, the convergent channel shows least entropy effects and extreme effects are noted for divergent case whereas uniform channel stays behind the divergent one.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-98678-2