Network Delay and Cache Overflow: A Parameter Estimation Method for Time Window Based Hopping Network

A basic understanding of delayed packet loss is key to successfully applying it to multi-node hopping networks. Given the problem of delayed data loss due to network delay in a hop network environment, we review early time windowing approaches, for which most contributions focus on end-to-end hoppin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2023-01, Vol.25 (1), p.116
Hauptverfasser: Fang, Zhu, Xu, Zhengquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A basic understanding of delayed packet loss is key to successfully applying it to multi-node hopping networks. Given the problem of delayed data loss due to network delay in a hop network environment, we review early time windowing approaches, for which most contributions focus on end-to-end hopping networks. However, they do not apply to the general hopping network environment, where data transmission from the sending host to the receiving host usually requires forwarding at multiple intermediate nodes due to network latency and network cache overflow, which may result in delayed packet loss. To overcome this challenge, we propose a delay time window and a method for estimating the delay time window. By examining the network delays of different data tasks, we obtain network delay estimates for these data tasks, use them as estimates of the delay time window, and validate the estimated results to verify that the results satisfy the delay distribution law. In addition, simulation tests and a discussion of the results were conducted to demonstrate how to maximize the reception of delay groupings. The analysis shows that the method is more general and applicable to multi-node hopping networks than existing time windowing methods.
ISSN:1099-4300
1099-4300
DOI:10.3390/e25010116