Neural POS tagging of shahmukhi by using contextualized word representations
Part of Speech (POS) tagging has a preliminary role in building natural language processing applications. This paper presents the development and evaluation of the first POS tagged corpus along with a Bi-directional long-short memory (BiLSTM) network based POS tagger for Shahmukhi (Western Punjabi)...
Gespeichert in:
Veröffentlicht in: | Journal of King Saud University. Computer and information sciences 2023-01, Vol.35 (1), p.335-356 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Part of Speech (POS) tagging has a preliminary role in building natural language processing applications. This paper presents the development and evaluation of the first POS tagged corpus along with a Bi-directional long-short memory (BiLSTM) network based POS tagger for Shahmukhi (Western Punjabi) at this scale. A balanced corpus of 0.13 million words has been annotated which contains text from 14 different text domains. A Shahmukhi POS tagset has been devised by studying the applicability of the CLE Urdu POS tagset and tagging guidelines have also been designed for annotation. A multi-step corpus evaluation process has been employed for tagged corpus including grammar-based and n-gram based consistency evaluations. The average inter-annotator agreement for all domains is 95.35% along with an average Kappa coefficient of 0.94. The performance of the BiLSTM POS tagger has been compared with the well-known language independent TreeTagger and the Stanford POS tagger. The accuracy of the tagger has been further improved by employing transfer learning by training context-free (Word2Vec) and contextualized (ELMo) word representations on a corpus of 14.9 Shahmukhi words which has been collected from World Wide Web. The tagger performed with an f-score of 96.11 and the accuracy of 96.12%. For a morphologically-rich and low-resourced language, these POS tagging results are quite promising. |
---|---|
ISSN: | 1319-1578 2213-1248 |
DOI: | 10.1016/j.jksuci.2022.12.004 |