Sustainability assessment of xylitol production from empty fruit bunch

Empty fruit bunch (EFB), one of the wastes from palm oil production, can be utilized into fuels and chemicals. The aim of this paper is to find the optimum capacity to produce xylitol from EFB. The optimum capacity was found by simultaneously considering its profitability, hazard potential and envir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hafyan, Rendra, Bhullar, Lupete, Putra, Zulfan, Bilad, MR, Wirzal, MDH, Nordin, NAHM
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Empty fruit bunch (EFB), one of the wastes from palm oil production, can be utilized into fuels and chemicals. The aim of this paper is to find the optimum capacity to produce xylitol from EFB. The optimum capacity was found by simultaneously considering its profitability, hazard potential and environmental performances. The process was developed and simulated using Aspen Plus to analyze its technical challenges and economic performances, covering net present values, internal rate of returns and payback period. On the other hand, hazard identification and ranking (HIRA) was used to evaluate its safety performances, while Simapro V.8.5.2 was used to assess the environmental impact via a life cycle assessment (LCA). The results show that the high consumption of steam in chemical hydrogenation causes the main contribution of Global warming potential (GWP) by 62%. This acid pre-treatment is also considered the most toxic part of the process while the hydrogenation of xylitol is the most hazardous part based on fire and explosion perspectives. Then, multi-objective optimization using Genetic Algorithm (GA) was performed in Matlab to find the optimum capacity. The methodology and result of this work lay the foundation of future works in utilizing.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201926806018