Experimental and CFD Investigation on Flow Behaviors of a NPP Pump under Natural Circulation Condition

Passive safety system is the core feature of advanced nuclear power plant (NPP). It is a research hotspot to fulfill the function of passive safety system by improving the NPP natural circulation capacity. Considering that the flow behaviors of stopped pump pose a significant effect on natural circu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science and Technology of Nuclear Installations 2019, Vol.2019 (2019), p.1-10
Hauptverfasser: Li, Mingrui, Hao, Jianli, Yu, Lei, Li, Weitong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Passive safety system is the core feature of advanced nuclear power plant (NPP). It is a research hotspot to fulfill the function of passive safety system by improving the NPP natural circulation capacity. Considering that the flow behaviors of stopped pump pose a significant effect on natural circulation, both experimental and computational fluid dynamics (CFD) methods were performed to investigate the flow behaviors of a NPP centrifugal pump under natural circulation condition with a low flow rate. Since the pump structure may lead to different flows depending on the flow direction, an experimental loop was set up to measure the pressure drop and loss coefficient of the stopped pump for different flow directions. The experimental results show that the pressure drop of reverse direction is significantly greater than that of forward direction in same Reynolds number. In addition, the loss coefficient changes slightly while the Reynolds number is greater than 8 × 104; however, the coefficients show rapid increase with the decrease in Reynolds number under lower Reynolds number condition. According to the experimental data, an empirical correlation of the pump loss coefficient is obtained. A CFD analysis was also performed to simulate the experiment. The simulation provides a good accuracy with the experimental results. Furthermore, the internal flow field distributions are obtained. It is observed that the interface regions of main components in pump contribute to the most pressure losses. Significant differences are also observed in the flow field between forward and reverse condition. It is noted that the local flows vary with different Reynolds numbers. The study shows that the experimental and CFD methods are beneficial to enhance the understanding of pump internal flow behaviors.
ISSN:1687-6075
1687-6083
DOI:10.1155/2019/5250894