A Slug Flow Platform with Multiple Process Analytics Facilitates Flexible Reaction Optimization
Flow processing offers many opportunities to optimize reactions in a rapid and automated manner, yet often requires relatively large quantities of input materials. To combat this, the use of a flexible slug flow reactor, equipped with two analytical instruments, for low‐volume optimization experimen...
Gespeichert in:
Veröffentlicht in: | Advanced Science 2024-04, Vol.11 (13), p.e2308034-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flow processing offers many opportunities to optimize reactions in a rapid and automated manner, yet often requires relatively large quantities of input materials. To combat this, the use of a flexible slug flow reactor, equipped with two analytical instruments, for low‐volume optimization experiments are reported. A Buchwald–Hartwig amination toward the drug olanzapine, with 6 independent optimizable variables, is optimized using three different automated approaches: self‐optimization, design of experiments, and kinetic modeling. These approaches are complementary and provide differing information on the reaction: pareto optimal operating points, response surface models, and mechanistic models, respectively. The results are achieved using |
---|---|
ISSN: | 2198-3844 2198-3844 |
DOI: | 10.1002/advs.202308034 |