A deep learning-based semiautomated workflow for triaging follow-up MR scans in treated nasopharyngeal carcinoma
It is imperative to optimally utilize virtues and obviate defects of fully automated analysis and expert knowledge in new paradigms of healthcare. We present a deep learning-based semiautomated workflow (RAINMAN) with 12,809 follow-up scans among 2,172 patients with treated nasopharyngeal carcinoma...
Gespeichert in:
Veröffentlicht in: | iScience 2023-12, Vol.26 (12), p.108347-108347, Article 108347 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is imperative to optimally utilize virtues and obviate defects of fully automated analysis and expert knowledge in new paradigms of healthcare. We present a deep learning-based semiautomated workflow (RAINMAN) with 12,809 follow-up scans among 2,172 patients with treated nasopharyngeal carcinoma from three centers (ChiCTR.org.cn, Chi-CTR2200056595). A boost of diagnostic performance and reduced workload was observed in RAINMAN compared with the original manual interpretations (internal vs. external: sensitivity, 2.5% [p = 0.500] vs. 3.2% [p = 0.031]; specificity, 2.9% [p |
---|---|
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2023.108347 |