Study of oxo-biodegradable polyethylene degradation in simulated soil

This study aims to evaluate the influence of pro-oxidant additive and accelerated aging on the degradation of polyethylene (PE) samples in simulated soil, in accordance with ASTM G160-03. Films of polyethylene with and without pro-oxidant additive were studied, before and after 72 hours of accelerat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2014-08, Vol.17 (suppl 1), p.121-126
Hauptverfasser: Gomes, Lucas Bonan, Klein, Jalma Maria, Brandalise, Rosmary Nichele, Zeni, Mara, Zoppas, Barbara Catarina, Grisa, Ana Maria Coulon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to evaluate the influence of pro-oxidant additive and accelerated aging on the degradation of polyethylene (PE) samples in simulated soil, in accordance with ASTM G160-03. Films of polyethylene with and without pro-oxidant additive were studied, before and after 72 hours of accelerated aging. The films were initially characterized by analyses of Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) (to evaluate the Carbonyl Index (CI)). The films were exposed for 30, 60 and 90 days in simulated soil, with controlled moisture and soil pH. The results showed the degradation of polyethylene films through an increase of CI in samples with additive and accelerated aging after 30 days of exposure, and a decrease, after 60 and 90 days, indicating the uptake of material oxidation by-products by microorganisms. The polyethylene films without pro-oxidant additive after accelerated aging showed greater structural and surface modifications, as compared to films with the additive.
ISSN:1516-1439
1980-5373
1980-5373
DOI:10.1590/1516-1439.224713