Divergent wiring of repressive and active chromatin interactions between mouse embryonic and trophoblast lineages

The establishment of the embryonic and trophoblast lineages is a developmental decision underpinned by dramatic differences in the epigenetic landscape of the two compartments. However, it remains unknown how epigenetic information and transcription factor networks map to the 3D arrangement of the g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-10, Vol.9 (1), p.4189-10, Article 4189
Hauptverfasser: Schoenfelder, Stefan, Mifsud, Borbala, Senner, Claire E., Todd, Christopher D., Chrysanthou, Stephanie, Darbo, Elodie, Hemberger, Myriam, Branco, Miguel R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The establishment of the embryonic and trophoblast lineages is a developmental decision underpinned by dramatic differences in the epigenetic landscape of the two compartments. However, it remains unknown how epigenetic information and transcription factor networks map to the 3D arrangement of the genome, which in turn may mediate transcriptional divergence between the two cell lineages. Here, we perform promoter capture Hi-C experiments in mouse trophoblast (TSC) and embryonic (ESC) stem cells to understand how chromatin conformation relates to cell-specific transcriptional programmes. We find that key TSC genes that are kept repressed in ESCs exhibit interactions between H3K27me3-marked regions in ESCs that depend on Polycomb repressive complex 1. Interactions that are prominent in TSCs are enriched for enhancer–gene contacts involving key TSC transcription factors, as well as TET1, which helps to maintain the expression of TSC-relevant genes. Our work shows that the first developmental cell fate decision results in distinct chromatin conformation patterns establishing lineage-specific contexts involving both repressive and active interactions. The role of the genome structure in the establishment of the embryonic and trophoblast lineages is still not well understood. Here the authors perform promoter capture Hi-C in mouse trophoblast and embryonic stem cells and find divergent networks of repressive and active chromatin interactions between the two lineages.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-06666-4