Derived Amharic alphabet sign language recognition using machine learning methods
Hearing-impaired people use sign language as a means of communication with those with no hearing disability. It is therefore difficult to communicate with hearing impaired people without the expertise of a signer or knowledge of sign language. As a result, technologies that understands sign language...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-10, Vol.10 (19), p.e38265, Article e38265 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hearing-impaired people use sign language as a means of communication with those with no hearing disability. It is therefore difficult to communicate with hearing impaired people without the expertise of a signer or knowledge of sign language. As a result, technologies that understands sign language are required to bridge the communication gap between those that have hearing impairments and those that dont. Ethiopian Amharic alphabets sign language (EAMASL) is different from other countries sign languages because Amharic Language is spoken in Ethiopia and has a number of complex alphabets. Presently in Ethiopia, just a few studies on AMASL have been conducted. Previous works, on the other hand, only worked on basic and a few derived Amharic alphabet signs. To solve this challenge, in this paper, we propose Machine Learning techniques such as Support Vector Machine (SVM) with Convolutional Neural Network (CNN), Histogram of Oriented Gradients (HOG), and their hybrid features to recognize the remaining derived Amharic alphabet signs. Because CNN is good for rotation and translation of signs, and HOG works well for low quality data under strong illumination variation and a small quantity of training data, the two have been combined for feature extraction. CNN (Softmax) was utilized as a classifier for normalized hybrid features in addition to SVM. SVM model using CNN, HOG, normalized, and non-normalized hybrid feature vectors achieved an accuracy of 89.02%, 95.42%, 97.40%, and 93.61% using 10-fold cross validation, respectively. With the normalized hybrid features, the other classifier, CNN (sofmax), produced a 93.55% accuracy. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e38265 |