Fabrication of Flexible Polymer Molds for Polymer Microstructuring by Roll-to-Roll Hot Embossing

Roll-to-roll hot embossing could revolutionize the manufacturing of multifunctional polymer films with the ability to process large area at a high rate with reduced cost. The continuous hot embossing of the films, however, has been hindered due to the lack of durable and flexible molds, which can re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2019-07, Vol.4 (7), p.12480-12488
Hauptverfasser: Kodihalli Shivaprakash, Nischay, Ferraguto, Thomas, Panwar, Artee, Banerjee, Shib Shankar, Barry, Carol Forance, Mead, Joey
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Roll-to-roll hot embossing could revolutionize the manufacturing of multifunctional polymer films with the ability to process large area at a high rate with reduced cost. The continuous hot embossing of the films, however, has been hindered due to the lack of durable and flexible molds, which can replicate micro and nanofeatures with reliability over several embossing cycles. In this work, we demonstrate for the first time the fabrication of a flexible polymer (polyimide) mold from the commercially available sheet by a maskless photolithography approach combined with inductively coupled plasma etching and its potential application to the roll-to-roll hot embossing process. The flexible polyimide mold consisted of holes with controlled dimensions: diameter: 14 μm, spacing: 16.5 μm, and depth: 6.8 μm. The reliability of flexible polyimide mold was tested and implemented by embossing micron-sized features on a commercial thermoplastic polymer, polyamide, and thermoplastic elastomer (TPE) sheet. The polyimide mold replicated micron-sized features on polymer substrates (polyamide and TPE) with excellent fidelity and was durable even after numerous embossing cycles.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.9b01468