A Novel Accelerated Corrosion Test for Supporting Devices in a Floating Photovoltaic System
Recently, countries from around the globe have been actively developing a new solar power system, namely, the floating photovoltaic (FPV) system. FPV is advantageous in terms of efficiency and cost effectiveness; however, environmental conditions on the surface of water are harsher than on the groun...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-04, Vol.11 (8), p.3308 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, countries from around the globe have been actively developing a new solar power system, namely, the floating photovoltaic (FPV) system. FPV is advantageous in terms of efficiency and cost effectiveness; however, environmental conditions on the surface of water are harsher than on the ground, and the regulations and standards for the long-term durability of supporting devices are insufficient. As a result, this study aims to investigate the durability of supporting devices through a novel type of accelerated corrosion test, copper-accelerated acetic acid salt spray (CASS). After an eight-day CASS test, the results demonstrated that only a small area of white protective layer on the SUPERDYMA shape steel was fully corroded and rusted. Moreover, five types of screw, fastened solidly on the SUPERDYMA shape steel, namely a galvanized steel screw capped with a type 316 stainless steel (SS) nut, a type 304 SS screw, a type 410 SS screw, a chromate-passivated galvanized steel screw, and a XP zinc–tin alloy coated steel screw, achieved varying degrees of rust. In general, the corrosion degree of the eight-day CASS test was more serious than that of the 136-day neutral salt spray (NSS) test. Therefore, the CASS test is faster and more efficient for the evaluation of the durability of supporting devices. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11083308 |