Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications

Despite established clinical utilisation, there is an increasing need for safer, more inert gadolinium-based contrast agents, and for chelators that react rapidly with radiometals. Here we report the syntheses of a series of chiral DOTA chelators and their corresponding metal complexes and reveal pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-02, Vol.9 (1), p.857-10, Article 857
Hauptverfasser: Dai, Lixiong, Jones, Chloe M., Chan, Wesley Ting Kwok, Pham, Tiffany A., Ling, Xiaoxi, Gale, Eric M., Rotile, Nicholas J., Tai, William Chi-Shing, Anderson, Carolyn J., Caravan, Peter, Law, Ga-Lai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite established clinical utilisation, there is an increasing need for safer, more inert gadolinium-based contrast agents, and for chelators that react rapidly with radiometals. Here we report the syntheses of a series of chiral DOTA chelators and their corresponding metal complexes and reveal properties that transcend the parent DOTA compound. We incorporated symmetrical chiral substituents around the tetraaza ring, imparting enhanced rigidity to the DOTA cavity, enabling control over the range of stereoisomers of the lanthanide complexes. The Gd chiral DOTA complexes are shown to be orders of magnitude more inert to Gd release than [GdDOTA] − . These compounds also exhibit very-fast water exchange rates in an optimal range for high field imaging. Radiolabeling studies with (Cu-64/Lu-177) also demonstrate faster labelling properties. These chiral DOTA chelators are alternative general platforms for the development of stable, high relaxivity contrast agents, and for radiometal complexes used for imaging and/or therapy. MRI contrast agents containing the rare earth metal gadolinium are very effective, yet unstable and thus potentially hazardous. Here, the authors developed complexes between gadolinium and the scaffolding compound DOTA with increased stability, which also lend themselves to radiometal labelling.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-03315-8