Protection Against Post-resuscitation Acute Kidney Injury by N-Acetylcysteine via Activation of the Nrf2/HO-1 Pathway

Acute kidney injury (AKI), the common complication after cardiopulmonary resuscitation (CPR), seriously affects the prognosis of cardiac arrest (CA) patients. However, there are limited studies on post-resuscitation AKI. In addition, it has been demonstrated that N-acetylcysteine (N-AC) as an ROS sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in medicine 2022-05, Vol.9, p.848491-848491
Hauptverfasser: Wang, Shiwei, Liu, Guoxiang, Jia, Tianyuan, Wang, Changsheng, Lu, Xiaoye, Tian, Lei, Yang, Qian, Zhu, Changqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acute kidney injury (AKI), the common complication after cardiopulmonary resuscitation (CPR), seriously affects the prognosis of cardiac arrest (CA) patients. However, there are limited studies on post-resuscitation AKI. In addition, it has been demonstrated that N-acetylcysteine (N-AC) as an ROS scavenger, has multiorgan-protective effects on systemic and regional ischaemia-reperfusion injuries. However, no studies have reported its protective effects against post-resuscitation AKI and potential mechanisms. This study aimed to clarify the protective effects of N-AC on post-resuscitation AKI and investigate whether its potential mechanism was mediated by activating Nrf-2/HO-1 pathway in the kidney. We established cardiac arrest models in rats. All animals were divided into four groups: the sham, control, N-AC, and ZnPP groups. Animals in each group except for the ZnPP group were assigned into two subgroups based on the survival time: 6 and 48 h. The rats in the control, N-AC, and ZnPP groups underwent induction of ventricular fibrillation (VF), 8 min untreated VF and cardiopulmonary resuscitation. Renal function indicators, were detected using commercial kits. Renal pathologic changes were assessed by haematoxylin-eosin (HE) staining. Oxidative stress and inflammatory responses were measured using the corresponding indicators. Apoptosis was evaluated using terminal uridine nick-end labeling (TUNEL) staining, and expression of proteins associated with apoptosis and the Nrf-2/HO-1 pathway was measured by western blotting. N-AC inhibited post-resuscitation AKI. We observed that N-AC reduced the levels of biomarkers of renal function derangement; improved renal pathological changes; and suppressed apoptosis, oxidative stress, and inflammatory response. Additionally, the production of ROS in the kidneys markedly decreased by N-AC. More importantly, compared with the control group, N-AC further upregulated the expression of nuclear Nrf2 and endogenous HO-1 in N-AC group. However, N-AC-determined protective effects on post-resuscitation AKI were markedly reversed after pretreatment of the HO-1 inhibitor zinc protoporphyrin (ZnPP). N-AC alleviated renal dysfunction and prolonged survival in animal models of CA. N-AC partially exerts beneficial renal protection via activation of the Nrf-2/HO-1 pathway. Altogether, all these findings indicated that N-AC as a common clinical agent, may have the potentially clinical utility to improve patients the outcomes in cardiac
ISSN:2296-858X
2296-858X
DOI:10.3389/fmed.2022.848491