Effective operator bases for beyond Standard Model scenarios: an EFT compendium for discoveries

A bstract It is not only conceivable but likely that the spectrum of physics beyond the Standard Model (SM) is non-degenerate. The lightest non-SM particle may reside close enough to the electroweak scale that it can be kinematically probed at high-energy experiments and on account of this, it must...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2021-01, Vol.2021 (1), p.1-59, Article 28
Hauptverfasser: Banerjee, Upalaparna, Chakrabortty, Joydeep, Prakash, Suraj, Rahaman, Shakeel Ur, Spannowsky, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract It is not only conceivable but likely that the spectrum of physics beyond the Standard Model (SM) is non-degenerate. The lightest non-SM particle may reside close enough to the electroweak scale that it can be kinematically probed at high-energy experiments and on account of this, it must be included as an infrared (IR) degree of freedom (DOF) along with the SM ones. The rest of the non-SM particles are heavy enough to be directly experimentally inaccessible and can be integrated out. Now, to capture the effects of the complete theory, one must take into account the higher dimensional operators constituted of the SM DOFs and the minimal extension. This construction, BSMEFT, is in the same spirit as SMEFT but now with extra IR DOFs. Constructing a BSMEFT is in general the first step after establishing experimental evidence for a new particle. We have investigated three different scenarios where the SM is extended by additional (i) uncolored, (ii) colored particles, and (iii) abelian gauge symmetries. For each such scenario, we have included the most-anticipated and phenomenologically motivated models to demonstrate the concept of BSMEFT. In this paper, we have provided the full EFT Lagrangian for each such model up to mass dimension 6. We have also identified the CP , baryon ( B ), and lepton ( L ) number violating effective operators.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP01(2021)028