Transceiver Design for Downlink SWIPT NOMA Systems With Cooperative Full-Duplex Relaying

This paper studies the application of simultaneous wireless information and power transfer (SWIPT) to downlink non-orthogonal multiple access (NOMA) system. A novel cooperative NOMA protocol for high communication reliability and user fairness is proposed, where a near NOMA user acts as a full-duple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.33464-33472
Hauptverfasser: Wu, Wei, Yin, Xiaojuan, Deng, Ping, Guo, Tianwen, Wang, Baoyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the application of simultaneous wireless information and power transfer (SWIPT) to downlink non-orthogonal multiple access (NOMA) system. A novel cooperative NOMA protocol for high communication reliability and user fairness is proposed, where a near NOMA user acts as a full-duplex (FD) energy-harvesting relay to help transmission from the source node S to the far NOMA user. The power splitting (PS) architecture is adopted at the relay to perform the SWIPT. The aim is to maximize the data rate of the near NOMA user while satisfying the QoS requirement of the far NOMA user and the energy causality condition of the near NOMA user. The formulated problem is a non-convex fractional programming. By jointly optimizing the power allocation factor, the PS ratio, the receiver filter, and the transmit beamforming, we propose alternative optimization (AO)-based algorithm to obtain an optimal solution. In addition, a low-complexity suboptimal scheme is proposed and the semi-closed form solution is derived to characterize the performance of our proposed design. The simulation results verify the correctness of theoretical analysis and show performance gain of our proposed protocol over the existing transmission protocols.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2904734