Flooding Tolerance of Rice: Regulatory Pathways and Adaptive Mechanisms

Rice is a major food crop for more than half of the world's population, while its production is seriously threatened by flooding, a common environmental stress worldwide. Flooding leads to oxygen deficiency, which is a major problem for submerged plants. Over the past three decades, significant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) 2024-05, Vol.13 (9), p.1178
Hauptverfasser: Wang, Jing, Han, Mingzhen, Huang, Yongxiang, Zhao, Junliang, Liu, Chuanguang, Ma, Yamei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rice is a major food crop for more than half of the world's population, while its production is seriously threatened by flooding, a common environmental stress worldwide. Flooding leads to oxygen deficiency, which is a major problem for submerged plants. Over the past three decades, significant progress has been made in understanding rice adaptation and molecular regulatory mechanisms in response to flooding. At the seed germination and seedling establishment stages, the CIPK15-SnRK1A-MYBS1 signaling cascade plays a central role in determining rice submergence tolerance. However, from seedlings to mature plants for harvesting, - and -regulated pathways represent two principal and opposite regulatory mechanisms in rice. In addition, phytohormones, especially gibberellins, induce adaptive responses to flooding throughout the rice growth period. This review summarizes the significant adaptive traits observed in flooded rice varieties and updates the molecular genetics and mechanisms of submergence tolerance in rice.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants13091178