Multi-Platform LiDAR for Non-Destructive Individual Aboveground Biomass Estimation for Changbai Larch (Larix olgensis Henry) Using a Hierarchical Bayesian Approach
Individual-tree aboveground biomass (AGB) estimation is vital for precision forestry and still worth exploring using multi-platform LiDAR data for high accuracy and efficiency. Based on the unmanned aerial vehicle and terrestrial LiDAR data, this study explores the feasibility of the individual tree...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-09, Vol.14 (17), p.4361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Individual-tree aboveground biomass (AGB) estimation is vital for precision forestry and still worth exploring using multi-platform LiDAR data for high accuracy and efficiency. Based on the unmanned aerial vehicle and terrestrial LiDAR data, this study explores the feasibility of the individual tree AGB estimation of Changbai larch (Larix olgensis Henry) of eight plots from three different regions in Maoershan Forest Farm of Heilongjiang, China, using nonlinear mixed effect model with hierarchical Bayesian approach. Results showed that the fused LiDAR data estimated the individual tree parameters (i.e., diameter at breast height (DBH), tree height (TH), and crown projection area (CPA)) with high accuracies (all R2 > 0.9 and relatively low RMSE and rRMSE) using region-based hierarchical cross-section analysis (RHCSA) algorithm. Considering regions as random variables, the nonlinear mixed-effects AGB model with three predictor variables (i.e., DBH, TH, and CPA) performed better than its corresponding nonlinear model. In addition, the hierarchical Bayesian method provided better model-fitting performances and more stable parameter estimates than the classical method (i.e., nonlinear mixed-effect model), especially for small sample sizes (e.g., |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14174361 |