Exciton–phonon coupling strength in single-layer MoSe2 at room temperature

Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton–phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton–phonon couplin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-02, Vol.12 (1), p.1-9, Article 954
Hauptverfasser: Li, Donghai, Trovatello, Chiara, Dal Conte, Stefano, Nuß, Matthias, Soavi, Giancarlo, Wang, Gang, Ferrari, Andrea C., Cerullo, Giulio, Brixner, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton–phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton–phonon coupling strength has not been measured at room temperature. Here, we use two-dimensional micro-spectroscopy to determine exciton–phonon coupling of single-layer MoSe 2 . We detect beating signals as a function of waiting time induced by the coupling between A excitons and A ′ 1 optical phonons. Analysis of beating maps combined with simulations provides the exciton–phonon coupling. We get a Huang–Rhys factor ~1, larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton–phonon coupling also in other heterogeneous semiconducting systems, with a spatial resolution ~260 nm, and provides design-relevant parameters for the development of optoelectronic devices. The exciton–phonon coupling (EXPC) affects the opto-electronic properties of atomically thin semiconductors. Here, the authors develop two-dimensional micro-spectroscopy to determine the EXPC of monolayer MoSe 2 .
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-20895-0