Resveratrol inhibited colorectal cancer progression by reducing oxidative DNA damage by targeting the JNK signaling pathway

Recent evidence has proved that resveratrol as a natural polyphenol has great anti-cancer and anti-proliferative effects in cancer cells. In this study, we aimed to examine the protective effects of resveratrol in rats with 1,2-dimethylhydrazine (DMH)-induced colorectal cancer and investigate the po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-11, Vol.10 (21), p.e38631, Article e38631
Hauptverfasser: Maleki, Masoumeh, Tabnak, Peyman, Golchin, Asal, Yousefi, Bahman, Nazari, Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent evidence has proved that resveratrol as a natural polyphenol has great anti-cancer and anti-proliferative effects in cancer cells. In this study, we aimed to examine the protective effects of resveratrol in rats with 1,2-dimethylhydrazine (DMH)-induced colorectal cancer and investigate the potential underlying molecular mechanisms. Male Wistar rats were classified into different groups, including Group 1 without any intervention, group 2 as resveratrol-received rats (8 mg/kg), Group 3 as DMH-received rats, and Group 4, as DMH and resveratrol-received rats. DNA damage, DNA repair, the expression levels and activities of antioxidants, and JNK signaling were evaluated in colon tissues. We found that DNA damage and DNA repair were significantly suppressed and induced, respectively, in DMH + resveratrol groups. The expression levels and activities of antioxidants were increased in DMH + resveratrol groups. Lipid and protein peroxidation were significantly suppressed in DMH + resveratrol groups. In addition, resveratrol also modulated JNK signaling in DMH + resveratrol groups. Our findings demonstrated that resveratrol effectively reversed DMH-mediated oxidative stress and DNA damage by targeting the JNK signaling pathway.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e38631