Schaftoside ameliorates oxygen glucose deprivation-induced inflammation associated with the TLR4/Myd88/Drp1-related mitochondrial fission in BV2 microglia cells

Neuroinflammation plays a major role in the development of ischemic stroke, and regulation of the proinflammatory TLR4 signaling pathway in microglia stands to be a promising therapeutic strategy for stroke intervention. Recently, the homeostasis of mitochondrial dynamics has also been raised as a v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pharmacological sciences 2019-01, Vol.139 (1), p.15-22
Hauptverfasser: Zhou, Kecheng, Wu, Jiayu, Chen, Jie, Zhou, Ye, Chen, Xiaolong, Wu, Qiaoyun, Xu, Yangxinzi, Tu, Wenzhan, Lou, Xinfa, Yang, Guanhu, Jiang, Songhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuroinflammation plays a major role in the development of ischemic stroke, and regulation of the proinflammatory TLR4 signaling pathway in microglia stands to be a promising therapeutic strategy for stroke intervention. Recently, the homeostasis of mitochondrial dynamics has also been raised as a vital component in maintaining neuronal health, but its relevance in microglia hasn't been investigated. Schaftoside, a natural flavonoid compound and a promising treatment for inflammation, has demonstrated potency against LPS-induced lung inflammation in mice; however, its action on TLR4-induced neuroinflammation and mitochondrial dynamics in microglia is still unknown. The effects of schaftoside in regulating inflammation and mitochondrial dynamics were investigated in vitro in oxygen glucose deprivation (OGD)-stimulated BV2 microglia cells. Schaftoside inhibited mRNA and protein expressions of proinflammatory cytokines (IL-1β, TNF-α, and IL-6) after 4 h in OGD-stimulated BV2 microglia cells, similar to the effect of TAK242, an inhibitor of TLR4. TLR4/Myd88 signaling pathway was effectively suppressed by schaftoside. In addition, both schaftoside and TAK242 treatments significantly decreased Drp1 expression, phosphorylation, translocation and mitochondrial fission in OGD-stimulated BV2 cells. Our study suggested that schaftoside was able to reduce neuroinflammation, which is mediated in part by reducing TLR4/Myd88/Drp1-related mitochondrial fission in BV2 microglia cells.
ISSN:1347-8613
1347-8648
DOI:10.1016/j.jphs.2018.10.012