Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles

A constructive method is provided that outputs a directed graph which is named a broken crown graph, containing $5n-9$ vertices and $k$ Hamiltonian cycles for any choice of integers $n \geq k \geq 4$. The construction is not designed to be minimal in any sense, but rather to ensure that the graphs p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of graph theory and applications 2016-04, Vol.4 (1), p.18-25
1. Verfasser: Haythorpe, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A constructive method is provided that outputs a directed graph which is named a broken crown graph, containing $5n-9$ vertices and $k$ Hamiltonian cycles for any choice of integers $n \geq k \geq 4$. The construction is not designed to be minimal in any sense, but rather to ensure that the graphs produced remain non-trivial instances of the Hamiltonian cycle problem even when $k$ is chosen to be much smaller than $n$.
ISSN:2338-2287
2338-2287
DOI:10.5614/ejgta.2016.4.1.3