Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles
A constructive method is provided that outputs a directed graph which is named a broken crown graph, containing $5n-9$ vertices and $k$ Hamiltonian cycles for any choice of integers $n \geq k \geq 4$. The construction is not designed to be minimal in any sense, but rather to ensure that the graphs p...
Gespeichert in:
Veröffentlicht in: | Electronic journal of graph theory and applications 2016-04, Vol.4 (1), p.18-25 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A constructive method is provided that outputs a directed graph which is named a broken crown graph, containing $5n-9$ vertices and $k$ Hamiltonian cycles for any choice of integers $n \geq k \geq 4$. The construction is not designed to be minimal in any sense, but rather to ensure that the graphs produced remain non-trivial instances of the Hamiltonian cycle problem even when $k$ is chosen to be much smaller than $n$. |
---|---|
ISSN: | 2338-2287 2338-2287 |
DOI: | 10.5614/ejgta.2016.4.1.3 |