Taking a shortcut: what mechanisms do fish use?
Path integration is a powerful navigational mechanism whereby individuals continuously update their distance and angular vector of movement to calculate their position in relation to their departure location, allowing them to return along the most direct route even across unfamiliar terrain. While p...
Gespeichert in:
Veröffentlicht in: | Communications biology 2024-05, Vol.7 (1), p.578-12, Article 578 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Path integration is a powerful navigational mechanism whereby individuals continuously update their distance and angular vector of movement to calculate their position in relation to their departure location, allowing them to return along the most direct route even across unfamiliar terrain. While path integration has been investigated in several terrestrial animals, it has never been demonstrated in aquatic vertebrates, where movement occurs through volumetric space and sensory cues available for navigation are likely to differ substantially from those in terrestrial environments. By performing displacement experiments with
Lamprologus ocellatus
, we show evidence consistent with fish using path integration to navigate alongside other mechanisms (allothetic place cues and route recapitulation). These results indicate that the use of path integration is likely to be deeply rooted within the vertebrate phylogeny irrespective of the environment, and suggests that fish may possess a spatial encoding system that parallels that of mammals.
By performing displacement experiments with
Lamprologus ocellatus
, we show evidence consistent with fish using path integration to navigate alongside other mechanisms: allothetic place cues and route recapitulation. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-024-06179-5 |