Transcriptome Analysis and Differential Expression in Tall Fescue Harboring Different Endophyte Strains in Response to Water Deficit

Core Ideas RNA‐seq was performed on four tall fescue clone pairs. Three Epichloë coenophiala strains were evaluated. Gene expression was compared for stressed and unstressed plants. Differentially expressed unigenes were identified. Few positive endophyte effects on stress tolerance were observed. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The plant genome 2019-06, Vol.12 (2), p.1-14
Hauptverfasser: Dinkins, Randy D., Nagabhyru, Padmaja, Young, Carolyn A., West, Charles P., Schardl, Christopher L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Core Ideas RNA‐seq was performed on four tall fescue clone pairs. Three Epichloë coenophiala strains were evaluated. Gene expression was compared for stressed and unstressed plants. Differentially expressed unigenes were identified. Few positive endophyte effects on stress tolerance were observed. Two tall fescue [Lolium arundinaceum (Schreb.) Darbysh. = Schedonorus arundinaceus (Schreb.) Dumort. = Festuca arundinacea var. arundinacea Schreb.] plant genotypes with an Epichloë coenophiala (Morgan‐Jones & W. Gams) C.W. Bacon & Schardl common toxic endophyte (CTE), one with a nontoxic strain (NTE19) and one with another Epichloë species (FaTG‐4) were evaluated and compared with their respective endophyte‐free clones for responses to water‐deficit stress in the greenhouse. One of the plant genotypes (P27) showed a positive effect of its CTE strain on tiller production after stress and resumed watering. In transcriptome analysis of the pseudostems (leaf sheath whorls), differentially expressed genes (DEGs) were defined as having at least twofold expression difference and false discovery rate (FDR) < 0.05 in comparisons of water treatment (stressed or watered), endophyte presence or absence, or both. Stress affected 38% of the plant transcripts including those for the expected stress‐response pathways. The DEGs affected by endophyte in stressed plants were unique to individual plant genotypes. In unstressed plants, endophyte presence tended to reduce expression of genes putatively for defense against fungi, but in unstressed P27 endophyte presence there was enhanced expression of dehydrin and heat shock protein genes. Our results indicated subtle and variable effects of endophytes on tall fescue gene expression; where the endophyte confers protection, its effects on plant gene expression may help prime the plant for stress resistance.
ISSN:1940-3372
1940-3372
DOI:10.3835/plantgenome2018.09.0071