AID assists DNMT1 to attenuate BCL6 expression through DNA methylation in diffuse large B-cell lymphoma cell lines

The BCL6 proto-oncogene encodes a transcriptional repressor, which is required for germinal centers (GCs) formation and lymphomagenesis. Previous studies have been reported that the constitutive expression of BCL6 leads to diffuse large B cell lymphoma (DLBCL) through activation-induced cytidine dea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neoplasia (New York, N.Y.) N.Y.), 2020-03, Vol.22 (3), p.142-153
Hauptverfasser: Jiao, Junna, Lv, Zhuangwei, Zhang, Ping, Wang, Yang, Yuan, Meng, Yu, Xiaozhuo, Otieno Odhiambo, Woodvine, Zheng, Mingzhe, Zhang, Hua, Ma, Yunfeng, Ji, Yanhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The BCL6 proto-oncogene encodes a transcriptional repressor, which is required for germinal centers (GCs) formation and lymphomagenesis. Previous studies have been reported that the constitutive expression of BCL6 leads to diffuse large B cell lymphoma (DLBCL) through activation-induced cytidine deaminase (AID) mediated chromosomal translocations and mutations. However, other DLBCLs (45%) without structural variants were characterized by abnormally high level of BCL6 expression through an unknown mechanism. Herein, we report that deficiency in AID or methyltransferase 1 (DNMT1) triggers high level of BCL6 expression. AID-DNMT1 complex binds to −0.4 kb −0 kb region of BCL6 promoter and contributes to generate BCL6 methylation which results in inhibition of BCL6 expression. The proteasome pathway inhibitor MG132 induces accumulation of AID and DNMT1, causes decreased BCL6 expression, and leads to cell apoptosis and tumor growth inhibition in DLBCL cell xenograft mice. These findings propose mechanistic insight into an alternative cofactor role of AID in assisting DNMT1 to maintain BCL6 methylation, thus suppress BCL6 transcription in DLBCL. This novel mechanism will provide a new drug selection in the therapeutic approach to DLBCL in the future.
ISSN:1476-5586
1522-8002
1476-5586
DOI:10.1016/j.neo.2020.01.002