A binary encoding of spinors and applications
We present a binary code for spinors and Clifford multiplication using non-negative integers and their binary expressions, which can be easily implemented in computer programs for explicit calculations. As applications, we present explicit descriptions of the triality automorphism of (8), explicit r...
Gespeichert in:
Veröffentlicht in: | Complex manifolds (Warsaw, Poland) Poland), 2020-08, Vol.7 (1), p.162-193 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a binary code for spinors and Clifford multiplication using non-negative integers and their binary expressions, which can be easily implemented in computer programs for explicit calculations. As applications, we present explicit descriptions of the triality automorphism of
(8), explicit representations of the Lie algebras spiy (8), spiy (7) and g
, etc. |
---|---|
ISSN: | 2300-7443 2300-7443 |
DOI: | 10.1515/coma-2020-0100 |