Removal of Methylene Blue Dye from Aqueous Solutions Using Polymer Inclusion Membrane Containing Calix[4]pyrrole

The effective purification of aqueous solutions of methylene blue dye was tested using polymer inclusion membranes (PIMs) that contained cellulose triacetate (CTA) as a polymer base, o-nitrophenyl octyl ether ( -NPOE) as a plasticizer, and -tetra methyl tetrakis-[methyl-2-(4-acetlphenoxy)] calix[4]p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Membranes (Basel) 2024-04, Vol.14 (4), p.92
Hauptverfasser: Nowik-Zajac, Anna, Zawierucha, Iwona, Lagiewka, Jakub, Jaksender, Karolina, Witt, Katarzyna, Malina, Grzegorz, Sabadash, Vira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effective purification of aqueous solutions of methylene blue dye was tested using polymer inclusion membranes (PIMs) that contained cellulose triacetate (CTA) as a polymer base, o-nitrophenyl octyl ether ( -NPOE) as a plasticizer, and -tetra methyl tetrakis-[methyl-2-(4-acetlphenoxy)] calix[4]pyrrole (KP) as a carrier. Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were used to define the microstructure and surface of PIMs. Experimental results showed that, with an increased concentration of methylene blue in an aqueous solution, the removal percentage also increased. Further observation showed that the flux increased with the rise in the source phase pH values from 3 to 10. The carrier and plasticizer content in the membrane significantly influenced the membrane's transport properties. The optimal composition of the membrane in percent by weight for KP was 74% plasticizer; 18% support, and 8% carrier. The maximum MB removal (93.10%) was achieved at 0.10 M HCl solution as the receiving phase. It was shown that the membrane with optimal composition showed good reusability and enabled the easy and spontaneous separation of methylene blue from aqueous solutions.
ISSN:2077-0375
2077-0375
DOI:10.3390/membranes14040092