Improving accuracy of estimating glomerular filtration rate using artificial neural network: model development and validation
The performance of previously published glomerular filtration rate (GFR) estimation equations degrades when directly used in Chinese population. We incorporated more independent variables and using complicated non-linear modeling technology (artificial neural network, ANN) to develop a more accurate...
Gespeichert in:
Veröffentlicht in: | Journal of translational medicine 2020-03, Vol.18 (1), p.120-120, Article 120 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The performance of previously published glomerular filtration rate (GFR) estimation equations degrades when directly used in Chinese population. We incorporated more independent variables and using complicated non-linear modeling technology (artificial neural network, ANN) to develop a more accurate GFR estimation model for Chinese population.
The enrolled participants came from the Third Affiliated Hospital of Sun Yat-sen University, China from Jan 2012 to Jun 2016. Participants with age |
---|---|
ISSN: | 1479-5876 1479-5876 |
DOI: | 10.1186/s12967-020-02287-y |