Improving accuracy of estimating glomerular filtration rate using artificial neural network: model development and validation

The performance of previously published glomerular filtration rate (GFR) estimation equations degrades when directly used in Chinese population. We incorporated more independent variables and using complicated non-linear modeling technology (artificial neural network, ANN) to develop a more accurate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of translational medicine 2020-03, Vol.18 (1), p.120-120, Article 120
Hauptverfasser: Li, Ningshan, Huang, Hui, Qian, Han-Zhu, Liu, Peijia, Lu, Hui, Liu, Xun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of previously published glomerular filtration rate (GFR) estimation equations degrades when directly used in Chinese population. We incorporated more independent variables and using complicated non-linear modeling technology (artificial neural network, ANN) to develop a more accurate GFR estimation model for Chinese population. The enrolled participants came from the Third Affiliated Hospital of Sun Yat-sen University, China from Jan 2012 to Jun 2016. Participants with age
ISSN:1479-5876
1479-5876
DOI:10.1186/s12967-020-02287-y