Reliable Genetic Correlation Estimation via Multiple Sample Splitting and Smoothing

In this paper, we aim to investigate the problem of estimating the genetic correlation between two traits. Instead of making assumptions about the distribution of effect sizes of the genetic factors, we propose the use of a high-dimensional linear model to relate a trait to genetic factors. To estim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-05, Vol.11 (9), p.2163
1. Verfasser: Mai, The Tien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we aim to investigate the problem of estimating the genetic correlation between two traits. Instead of making assumptions about the distribution of effect sizes of the genetic factors, we propose the use of a high-dimensional linear model to relate a trait to genetic factors. To estimate the genetic correlation, we develop a generic strategy that combines the use of sparse penalization methods and multiple sample splitting approaches. The final estimate is determined by taking the median of the calculations, resulting in a smoothed and reliable estimate. Through simulations, we demonstrate that our proposed approach is reliable and accurate in comparison to naive plug-in methods. To further illustrate the advantages of our method, we apply it to a real-world example of a bacterial GWAS dataset, specifically to estimate the genetic correlation between antibiotic resistant traits in Streptococus pneumoniae. This application not only validates the effectiveness of our method but also highlights its potential in real-world applications.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11092163