Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid

Preventing the deactivation of noble metal-based catalysts due to self-oxidation and poisonous adsorption is a significant challenge in organic electro-oxidation. In this study, we employ a pulsed potential electrolysis strategy for the selective electrocatalytic oxidation of glycerol to glyceric ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-03, Vol.15 (1), p.2420-2420, Article 2420
Hauptverfasser: Chen, Wei, Zhang, Liang, Xu, Leitao, He, Yuanqing, Pang, Huan, Wang, Shuangyin, Zou, Yuqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Preventing the deactivation of noble metal-based catalysts due to self-oxidation and poisonous adsorption is a significant challenge in organic electro-oxidation. In this study, we employ a pulsed potential electrolysis strategy for the selective electrocatalytic oxidation of glycerol to glyceric acid over a Pt-based catalyst. In situ Fourier-transform infrared spectroscopy, quasi-in situ X-ray photoelectron spectroscopy, and finite element simulations reveal that the pulsed potential could tailor the catalyst’s oxidation and surface micro-environment. This prevents the overaccumulation of poisoning intermediate species and frees up active sites for the re-adsorption of OH adsorbate and glycerol. The pulsed potential electrolysis strategy results in a higher glyceric acid selectivity (81.8%) than constant-potential electrocatalysis with 0.7 V RHE (37.8%). This work offers an efficient strategy to mitigate the deactivation of noble metal-based electrocatalysts. Mitigating the deactivation of noble metal-based catalysts caused by self-oxidation and toxic adsorption poses a considerable challenge in organic electro-oxidation. This study addresses the issue by employing a pulsed potential electrolysis approach to selectively electrocatalyze the oxidation of glycerol to glyceric acid using a Pt-based catalyst.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-46752-4