Potential of lignocellulosic fiber reinforced polymer composites for automobile parts production: Current knowledge, research needs, and future direction
In recent years, there has been a notable surge in research focusing on the use of natural fiber-reinforced polymer composites (NFRPCs) in the automobile industry. These materials offer several advantages over their synthetic counterparts, including lightweight properties, renewability, cost-effecti...
Gespeichert in:
Veröffentlicht in: | Heliyon 2024-02, Vol.10 (3), p.e24683-e24683, Article e24683 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, there has been a notable surge in research focusing on the use of natural fiber-reinforced polymer composites (NFRPCs) in the automobile industry. These materials offer several advantages over their synthetic counterparts, including lightweight properties, renewability, cost-effectiveness, and environmental friendliness. This increasing research interest in NFRPCs within the automotive sector is primarily aimed at overcoming the challenges that have thus far limited their industrial applications when compared to conventional synthetic composites. This paper provides a comprehensive overview of the potential applications and sustainability of lignocellulosic-based NFRPCs in the automobile industry. It examines the current state of knowledge, identifies research needs and existing limitations, and provides insights into future perspectives. This review shows that, while lignocellulosic fibers hold great promise as sustainable, high-performance, and cost-effective alternatives to traditional reinforcing fibers, continuous research is needed to further address issues such as fiber-matrix compatibility, processing techniques, long-term durability concerns, and general property improvement. These advancements are essential to meet the increasing performance demand for eco-friendly, renewable, and energy-efficient materials in automotive design.
[Display omitted] |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e24683 |