Global sleep homeostasis reflects temporally and spatially integrated local cortical neuronal activity
Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define 'Process S', a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5-4 Hz) during sleep....
Gespeichert in:
Veröffentlicht in: | eLife 2020-07, Vol.9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sleep homeostasis manifests as a relative constancy of its daily amount and intensity. Theoretical descriptions define 'Process S', a variable with dynamics dependent on global sleep-wake history, and reflected in electroencephalogram (EEG) slow wave activity (SWA, 0.5-4 Hz) during sleep. The notion of sleep as a local, activity-dependent process suggests that activity history must be integrated to determine the dynamics of global Process S. Here, we developed novel mathematical models of Process S based on cortical activity recorded in freely behaving mice, describing local Process S as a function of the deviation of neuronal firing rates from a locally defined set-point, independent of global sleep-wake state. Averaging locally derived Processes S and their rate parameters yielded values resembling those obtained from EEG SWA and global vigilance states. We conclude that local Process S dynamics reflects neuronal activity integrated over time, and global Process S reflects local processes integrated over space. |
---|---|
ISSN: | 2050-084X 2050-084X |
DOI: | 10.7554/elife.54148 |