Comparative Assessment of Mechanical Properties and Fatigue Life of Conventional and Multistep Rolled Forged Connecting Rods of High Strength AISI/SAE 4140 Steel

This paper aims to improve the mechanical properties and fatigue life of AISI/SAE 4140 alloy steel connecting rods (CRs). Conventional CRs are typically manufactured through open die forging/hammering, blocking, and hot forging processes. In the present work, a modification to the process route has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2023-06, Vol.13 (6), p.1035
Hauptverfasser: Khan, Wajid Ali, Hayat, Qamar, Ahmed, Furqan, Ali, Mohsin, Zain-ul-Abdein, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper aims to improve the mechanical properties and fatigue life of AISI/SAE 4140 alloy steel connecting rods (CRs). Conventional CRs are typically manufactured through open die forging/hammering, blocking, and hot forging processes. In the present work, a modification to the process route has been proposed such that the open die forging/hammering was completely replaced with a multistep asymmetrical reducer rolling technique. Four rolling passes were introduced to achieve the desired preform shape and size. The effect of each rolling pass on grain size, mechanical properties, and fatigue life was investigated. Samples from each multistep rolling, blocking, and forging stage were subjected to impact, hardness, tensile, and fatigue testing. Metallography using optical and scanning electron microscopes was also conducted to reveal metallurgical changes. Fatigue testing and fractography were performed using the R.R. Moore Rotating-Beam Fatigue testing machine and scanning electron microscope, respectively, to evaluate the fatigue life and the fracture behavior of both the conventional and multistep rolled forged CRs. It was observed that, unlike the conventional forging process, multistep asymmetrical rolling gradually reduces grain size as the rolling progresses and improves yield, tensile, and impact strengths, hardness, and ductility. In comparison to conventional forging, multistep rolling led to an almost 33% and 29% increase in yield and tensile strengths, respectively. Moreover, the fatigue life of multistep rolled CR increased by more than five times compared to conventional CR.
ISSN:2075-4701
2075-4701
DOI:10.3390/met13061035