Cluster Analysis of the Wind Events and Seasonal Wind Circulation Patterns in the Mexico City Region

The residents of Mexico City face serious problems of air pollution. Identifying the most representative scenarios for the transport and dispersion of air pollutants requires the knowledge of the main wind circulation patterns. In this paper, a simple method to recognize and characterize the wind ci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2015-08, Vol.6 (8), p.1006-1031
Hauptverfasser: Carreón-Sierra, Susana, Salcido, Alejandro, Castro, Telma, Celada-Murillo, Ana-Teresa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The residents of Mexico City face serious problems of air pollution. Identifying the most representative scenarios for the transport and dispersion of air pollutants requires the knowledge of the main wind circulation patterns. In this paper, a simple method to recognize and characterize the wind circulation patterns in a given region is proposed and applied to the Mexico City winds (2001–2006). This method uses a lattice wind approach to model the local wind events at the meso-β scale, and hierarchical cluster analysis to recognize their agglomerations in their phase space. Data of the meteorological network of Mexico City was used as input for the lattice wind model. The Ward’s clustering algorithm with Euclidean distance was applied to organize the model wind events in seasonal clusters for each year of the period. Comparison of the hourly population trends of these clusters permitted the recognition and detailed description of seven circulation patterns. These patterns resemble the qualitative descriptions of the Mexico City wind circulation modes reported by other authors. Our method, however, permitted also their quantitative characterization in terms of the wind attributes of velocity, divergence and vorticity, and an estimation of their seasonal and annual occurrence probabilities, which never before were quantified.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos6081006