Greenhouse Gas Balance of Native Forests in New South Wales, Australia em> /em

To quantify the climate change impacts of forestry and forest management options, we must consider the entire forestry system: the carbon dynamics of the forest, the life cycle of harvested wood products, and the substitution benefit of using biomass and wood products compared to more greenhouse gas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2012-08, Vol.3 (3), p.653-683
Hauptverfasser: Georgina Kelly, Justin Williams, Annette Cowie, Fabiano de Aquino Ximenes, Brendan H. George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To quantify the climate change impacts of forestry and forest management options, we must consider the entire forestry system: the carbon dynamics of the forest, the life cycle of harvested wood products, and the substitution benefit of using biomass and wood products compared to more greenhouse gas intensive options. This paper presents modelled estimates of the greenhouse gas balance of two key native forest areas managed for production in New South Wales for a period of 200 years, and compares it to the option of managing for conservation only. These two case studies show that forests managed for production provide the greatest ongoing greenhouse gas benefits, with long-term carbon storage in products, and product substitution benefits critical to the outcome. Thus native forests could play a significant part in climate change mitigation, particularly when sustainably managed for production of wood and non-wood products including biomass for bioenergy. The potential role of production forestry in mitigating climate change, though substantial, has been largely overlooked in recent Australian climate change policy.
ISSN:1999-4907
1999-4907
DOI:10.3390/f3030653