Stimulated emission from hexagonal silicon-germanium nanowires

Hexagonal crystal phase silicon-germanium (hex-SiGe) features efficient direct bandgap emission between 1.5 and 3.4 µm. For expanding its application potential, the key challenge is to demonstrate material gain for enabling a hex-SiGe semiconductor laser. Here we report the transition from the spont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications physics 2024-10, Vol.7 (1), p.328-8, Article 328
Hauptverfasser: van Tilburg, Marvin A. J., Farina, Riccardo, van Lange, Victor T., Peeters, Wouter H. J., Meder, Steffen, Jansen, Marvin M., Verheijen, Marcel A., Vettori, M., Finley, Jonathan J., Bakkers, Erik. P. A. M., Haverkort, Jos. E. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hexagonal crystal phase silicon-germanium (hex-SiGe) features efficient direct bandgap emission between 1.5 and 3.4 µm. For expanding its application potential, the key challenge is to demonstrate material gain for enabling a hex-SiGe semiconductor laser. Here we report the transition from the spontaneous emission regime to the stimulated emission-dominated amplified spontaneous emission regime in the optically excited part of a hexagonal Si 0.2 Ge 0.8 nanowire. We observe narrow resonance peaks arising above a spontaneous emission background, which show lasing signatures such as a threshold and a superlinear increase of the emission. A Hakki-Paoli analysis of the height of the cavity resonances provides the gain spectrum of hex-SiGe, showing evidence for a positive material gain. Measurements of the cavity line widths provide an independent assessment of the total cavity loss. While lasing has not been reached, the observation of optical amplification and amplified spontaneous emission provides a clear roadmap toward lasing in hexagonal SiGe. This opens a new pathway for the monolithic integration of a Si-compatible laser within electronic chips. Hexagonal silicon-germanium features efficient direct bandgap light emission. Here, the authors demonstrate the presence of stimulated emission and optical gain in hexagonal silicon germanium and provide a roadmap to reach lasing.
ISSN:2399-3650
2399-3650
DOI:10.1038/s42005-024-01824-1